Advertisements
Advertisements
Question
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Solution
The slope of the y-axis is \[\infty\].
Let (x1, y1) be the required point.
Given:
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence, }\frac{{x_1}^2}{9} + \frac{{y_1}^2}{16} = 1 . . . \left( 1 \right)\]
\[\frac{x^2}{9} + \frac{y^2}{16} = 1 \]
\[ \Rightarrow \frac{2x}{9} + \frac{2y}{16}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{y}{16}\frac{dy}{dx} = \frac{- x}{9}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 16x}{9y}\]
\[\text { Now,} \]
\[\text { Slope of the tangent at }\left( x, y \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 16 x_1}{9 y_1}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text { Slope of they-axis [Given }]\]
\[ \therefore \frac{- 16 x_1}{9 y_1} = \infty \]
\[ \Rightarrow \frac{9 y_1}{- 16 x_1} = 0\]
\[ \Rightarrow y_1 = 0\]
\[ \Rightarrow \frac{{x_1}^2}{9} + 0 = 1 [\text { From eq.} (1)]\]
\[ \Rightarrow {x_1}^2 = 9\]
\[ \Rightarrow x_1 = \pm 3\]
\[\text { Thus, the required points are }\left( 3, 0 \right)\text { and }\left( - 3, 0 \right).\]
APPEARS IN
RELATED QUESTIONS
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Which of the following represent the slope of normal?
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.