English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point C 2 ( X 2 + Y 2 ) = X 2 Y 2 at ( C Cos θ , C Sin θ ) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?

Solution

\[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \]

\[\text { Differentiating both sides w.r.t.x }, \]

\[ \Rightarrow 2x c^2 + 2y c^2 \frac{dy}{dx} = x^2 2y \frac{dy}{dx} + 2x y^2 \]

\[ \Rightarrow \frac{dy}{dx}\left( 2y c^2 - 2 x^2 y \right) = 2x y^2 - 2x c^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{x y^2 - x c^2}{y c^2 - x^2 y}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( \frac{c}{\cos \theta}, \frac{c}{\sin \theta} \right) \]

\[=\frac{\frac{c^3}{\cos \theta \sin^2 \theta} - \frac{c^3}{\cos \theta}}{\frac{c^3}{\sin\theta} - \frac{c^3}{\cos^2 \theta \sin\theta}}\]

\[ = \frac{\frac{1 - \sin^2 \theta}{\cos\theta \sin^2 \theta}}{\frac{\cos^2 \theta - 1}{\cos^2 \theta \sin\theta}}\]

\[ = \frac{co s^2 \theta}{\cos \theta \sin^2 \theta} \times \frac{\cos^2 \theta \sin\theta}{- \sin^2 \theta}\]

\[ = \frac{- \cos^3 \theta}{\sin^3 \theta}\]

\[\text { Given }\left( x_1 , y_1 \right) = \left( \frac{c}{\cos \theta}, \frac{c}{\sin \theta} \right)\]

\[\text { Equation of tangent is},\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{c}{\sin \theta} = \frac{- \cos^3 \theta}{\sin^3 \theta} \left( x - \frac{c}{\cos \theta} \right)\]

\[ \Rightarrow \frac{y\sin\theta - c}{\sin\theta} = \frac{- \cos^3 \theta}{\sin^3 \theta}\left( \frac{x \cos\theta - c}{\cos\theta} \right)\]

\[ \Rightarrow \sin^2 \theta\left( y \sin\theta - c \right) = - \cos^2 \theta\left( x\cos\theta - c \right)\]

\[ \Rightarrow y \sin^3 \theta - c \sin^2 \theta = - x \cos^3 \theta + c \cos^2 \theta\]

\[ \Rightarrow x \cos^3 \theta + y \sin^3 \theta = c\left( si n^2 \theta + \cos^2 \theta \right)\]

\[ \Rightarrow x \cos^3 \theta + y \sin^3 \theta = c\]

\[\text { Equation of normal is},\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{c}{\sin \theta} = \frac{\sin^3 \theta}{\cos^3 \theta}\left( x - \frac{c}{\cos \theta} \right)\]

\[ \Rightarrow \cos^3 \theta\left( y - \frac{c}{\sin \theta} \right) = \sin^3 \theta\left( x - \frac{c}{\cos \theta} \right)\]

\[ \Rightarrow y \cos^3 \theta - \frac{c \cos^3 \theta}{\sin\theta} = x \sin^3 \theta - \frac{c \sin^3 \theta}{\cos\theta}\]

\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = \frac{c \sin^3 \theta}{\cos\theta} - \frac{c \cos^3 \theta}{\sin\theta}\]

\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = c\left( \frac{\sin^4 \theta - \cos^4 \theta}{\cos\theta \sin\theta} \right)\]

\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = c\left[ \frac{\left( \sin^2 \theta + \cos^2 \theta \right)\left( \sin^2 \theta - \cos^2 \theta \right)}{\cos\theta \sin\theta} \right]\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta =\]

\[ 2c \left[ \frac{- \left( \cos^2 \theta - \sin^2 \theta \right)}{2\cos\theta \sin\theta} \right]\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta = 2c\left[ \frac{- \cos \left( 2\theta \right)}{\sin\left( 2\theta \right)} \right]\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta = - 2c \text { cot }\left( 2\theta \right)\]

\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta + 2c \text { cot }\left( 2\theta \right) = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.1 | Page 27

RELATED QUESTIONS

Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The curve y = `x^(1/5)` has at (0, 0) ______.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Let `y = f(x)` be the equation of the curve, then equation of normal is


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×