Advertisements
Advertisements
Question
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Solution
Slope of x - axis is 0
Let (x1, y1) be the required point.
\[y = 2 x^3 - 15 x^2 + 36x - 21\]
\[\text { Since }\left( x_1 , y_1 \right) \text { lies on the curve . Therefore } \]
\[ y_1 = 2 {x_1}^3 - 15 {x_1}^2 + 36 x_1 - 21 . . . \left( 1 \right)\]
\[\text { Now,} y = 2 x^3 - 15 x^2 + 36x - 21\]
\[ \Rightarrow \frac{dy}{dx} = 6 x^2 - 30x + 36\]
\[\text { Slope of tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = 6 {x_1}^2 - 30 x_1 + 36\]
\[\text { Given that }\]
\[\text { Slope of tangent at }\left( x, y \right)= \text { slope of thex-axis }\]
\[6 {x_1}^2 - 30 x_1 + 36 = 0\]
\[ \Rightarrow {x_1}^2 - 5 x_1 + 6 = 0\]
\[ \Rightarrow \left( x_1 - 2 \right)\left( x_1 - 3 \right) = 0\]
\[ \Rightarrow x_1 = 2 \text{ or }x_1 = 3\]
\[\text { Case }1: x_1 = 2\]
\[ y_1 = 16 - 60 + 72 - 21 = 7 ...............[\text { From } (1)]\]
\[\left( x_1 , y_1 \right) = \left( 2, 7 \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y - 7 = 0\left( x - 2 \right)\]
\[ \Rightarrow y = 7\]
\[\text { Case }2: x_1 = 3\]
\[ y_1 = 54 - 135 + 108 - 21 = 6 .................[\text { From }(1)]\]
\[\left( x_1 , y_1 \right) = \left( 3, 6 \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y - 6 = 0\left( x - 3 \right)\]
\[ \Rightarrow y = 6\]
APPEARS IN
RELATED QUESTIONS
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.