English

The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______. - Mathematics

Advertisements
Advertisements

Question

The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.

Options

  • x + 5y = 2

  • x – 5y = 2

  • 5x – y = 2

  • 5x + y = 2

MCQ
Fill in the Blanks

Solution

The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is x + 5y = 2.

Explanation:

Given that y(1 + x2) = 2 – x    ...(i)

If it cuts x-axis, then y-coordinate is 0.

∴ 0(1 + x2) = 2 – x

⇒ x = 2

Put x = 2 in equation (i)

y(1 + 4) = 2 – 2

⇒ y(5) = 0

⇒ y = 0

Point of contact = (2, 0)

Differentiating equation (i) w.r.t. x, we have

`y xx 2x + (1 + x^2)  "dy"/"dx"` = – 1

⇒ `2xy + (1 + x^2) "dy"/"dx"` = – 1

⇒ `(1 + x^2) "dy"/"dx"` = – 1 – 2xy

∴ `"dy"/"dx" = (-(1 + 2xy))/((1 + x^2))`

⇒ `"dy"/"dx"_(2, 0) = (-1)/((1 + 4)) = (-1)/5`

Equation of tangent is y – 0 = `- 1/5 (x - 2)`

⇒ 5y = – x + 2

⇒ x + 5y = 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 139]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 41 | Page 139

RELATED QUESTIONS

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×