Advertisements
Advertisements
Question
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Solution
\[a y^2 = x^3 \]
\[\text {Differentiating both sides w.r.t.x }, \]
\[2ay \frac{dy}{dx} = 3 x^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2}{2ay}\]
\[\text { Slope of tangent } = \left( \frac{dy}{dx} \right)_\left( a m^2 , a m^3 \right) =\frac{3 a^2 m^4}{2 a^2 m^3}=\frac{3m}{2}\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( a m^2 , a m^3 \right)\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - a m^3 = \frac{- 2}{3m} \left( x - a m^2 \right)\]
\[ \Rightarrow 3my - 3a m^4 = - 2x + 2a m^2 \]
\[ \Rightarrow 2x + 3my - a m^2 \left( 2 + 3 m^2 \right) = 0\]
APPEARS IN
RELATED QUESTIONS
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.