Advertisements
Advertisements
Question
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Solution
Let (x1, y1) represent the required point.
The slope of line 2x + 3y = 7 is \[\frac{- 2}{3}\] .
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence }, {x_1}^2 + {y_1}^2 = 13 . . . \left( 1 \right)\]
\[\text { Now }, x^2 + y^2 = 13\]
\[\text { On differentiating both sides w.r.t.x, we get}\]
\[2x + 2y\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- x}{y}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- x_1}{y_1}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text { Slope of the given line [Given] }\]
\[ \Rightarrow \frac{- x_1}{y_1} = \frac{- 2}{3}\]
\[ \Rightarrow x_1 = \frac{2 y_1}{3} . . . \left( 2 \right)\]
\[\text { From eq. (1), we get }\]
\[ \left( \frac{2 y_1}{3} \right)^2 + {y_1}^2 = 13\]
\[ \Rightarrow \frac{13 {y_1}^2}{9} = 13\]
\[ \Rightarrow {y_1}^2 = 9\]
\[ \Rightarrow y_1 = \pm 3\]
\[ \Rightarrow y_1 = 3 or y_1 = - 3\]
\[\text { and }\]
\[ x_1 = 2 or x_1 = - 2 [\text { From eq.} (2)]\]
\[\text {Thus, the required points are }\left( 2, 3 \right)\text { and }\left( - 2, - 3 \right).\]
APPEARS IN
RELATED QUESTIONS
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3