English

Prove that ( X a ) N + ( Y B ) N = 2 Touches the Straight Line X a + Y B = 2 for All N ∈ N, at the Point (A, B) ? - Mathematics

Advertisements
Advertisements

Question

Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?

Solution

\[\text { Now }, \left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\]

\[\frac{n}{a} \left( \frac{x}{a} \right)^{n - 1} + \frac{n}{b} \left( \frac{y}{b} \right)^{n - 1} \frac{dy}{dx} = 0\]

\[\frac{n}{b} \left( \frac{y}{b} \right)^{n - 1} \frac{dy}{dx} = \frac{- n}{a} \left( \frac{x}{a} \right)^{n - 1} \]

\[\frac{dy}{dx} = \frac{- n}{a} \left( \frac{x}{a} \right)^{n - 1} \times \frac{b}{n} \left( \frac{b}{y} \right)^{n - 1} = \frac{- b}{a} \left( \frac{bx}{ay} \right)^{n - 1} \]

\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_\left( a, b \right) =\frac{- b}{a} \left( \frac{b * a}{a * b} \right)^{n - 1} =\frac{- b}{a}... (2)\]

\[\text { The equation of tangent is }\]

\[y - b = \frac{- b}{a}\left( x - a \right)\]

\[ \Rightarrow ya - ab = - xb + ab\]

\[ \Rightarrow xb + ya = 2ab\]

\[ \Rightarrow \frac{x}{a} + \frac{y}{b} = 2\]

So, the given line touches the given curve at the given point.

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 18 | Page 29

RELATED QUESTIONS

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


At (0, 0) the curve y = x3 + x


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×