Advertisements
Advertisements
Question
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
Options
(0, 0)
(2, 16)
(3, 9)
none of these
Solution
None of these
\[\text { Let }\left( x_1 , y_1 \right)\text { be the required point.}\]
\[\text { Since, the point lies on the curve }, \]
\[\text { Hence }, y_1 = 12 x_1 - {x_1}^2 \]
\[\text { Now }, \]
\[y = 12x - x^2 \]
\[ \Rightarrow \frac{dy}{dx} = 12 - 2x\]
\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =12 - 2 x_1 \]
\[\text { Given }:\]
\[\text { Slope of the tangent }=0\]
\[12 - 2 x_1 = 0\]
\[ \Rightarrow x_1 = 6\]
\[\text { Now }, \]
\[ y_1 = 12 x_1 - {x_1}^2 = 72 - 36 = 36\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 6, 36 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Let `y = f(x)` be the equation of the curve, then equation of normal is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.