Advertisements
Advertisements
Question
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Solution
\[\text { We have, } \frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 . . . \left( 1 \right)\]
\[\text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1 . . . \left( 2 \right)\]
\[\text { Now we can find the slope of both the curve by differentiating w . r . t x }\]
\[ \Rightarrow \frac{2x}{a^2 + \lambda_1} + \frac{2y\frac{dy}{dx}}{b^2 + \lambda_1} = 0 \text { and } \frac{2x}{a^2 + \lambda_2} + \frac{2y\frac{dy}{dx}}{b^2 + \lambda_2} = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{x}{y} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \text { and } \frac{dy}{dx} = - \frac{x}{y} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[ \Rightarrow m_1 = - \frac{x}{y} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \text { and } m_2 = - \frac{x}{y} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[\text { Subtracting} \left( 2 \right) \text { from } \left( 1 \right), \text { we get }, \]
\[ x^2 \left( \frac{1}{a^2 + \lambda_1} - \frac{1}{a^2 + \lambda_2} \right) + y^2 \left( \frac{1}{b^2 + \lambda_1} - \frac{1}{b^2 + \lambda_2} \right) = 0\]
\[ \Rightarrow \frac{x^2}{y^2} = \frac{\lambda_2 - \lambda_1}{\left( b^2 + \lambda_1 \right)\left( b^2 + \lambda_2 \right)} \times \frac{1}{\frac{\lambda_1 - \lambda_2}{\left( a^2 + \lambda_1 \right)\left( a^2 + \lambda_2 \right)}}\]
\[\text { Now,} \]
\[ m_1 \times \times m_2 = \frac{x^2}{y^2} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[ = \frac{\lambda_2 - \lambda_1}{\left( b^2 + \lambda_1 \right)\left( b^2 + \lambda_2 \right)} \times \frac{\left( a^2 + \lambda_1 \right)\left( a^2 + \lambda_2 \right)}{\lambda_1 - \lambda_2} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[ = - 1\]
\[\text { hence,} \left( 1 \right) \text { and } \left( 2 \right) \text { cuts orthogonally } . \]
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The equation of normal to the curve y = tanx at (0, 0) is ______.
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3