Advertisements
Advertisements
Question
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Solution
Let (x1, y1) be the required point.
It is given that the tangent at this point is equally inclined to the axes. It means that the angle made by the tangent with the x-axis is \[\pm\] 45°
∴ Slope of the tangent = tan (\[\pm\] 45) = \[\pm\] 1 ......(1)
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence, } y_1 = 3 {x_1}^2 - 9 x_1 + 8 \]
\[\text { Now, } y = 3 x^2 - 9x + 8\]
\[ \Rightarrow \frac{dy}{dx} = 6x - 9\]
\[\text { Slope of the tangent at}\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =6 x_1 -9 .......(2)\]
\[\text { From eq. (1) and eq. (2), we get }\]
\[6 x_1 - 9 = \pm 1\]
\[ \Rightarrow 6 x_1 - 9 = 1 \text { or }6 x_1 - 9 = - 1\]
\[ \Rightarrow 6 x_1 = 10 \text { or }6 x_1 = 8\]
\[ \Rightarrow x_1 = \frac{10}{6} = \frac{5}{3} \text { or }x_1 = \frac{8}{6} = \frac{4}{3}\]
\[\text { Also,} \]
\[ y_1 = 3 \left( \frac{5}{3} \right)^2 - 9\left( \frac{5}{3} \right) + 8 \text { or } y_1 = 3 \left( \frac{4}{3} \right)^2 - 9\left( \frac{4}{3} \right) + 8\]
\[ \Rightarrow y_1 = \frac{25}{3} - \frac{45}{3} + 8 \text { or } y_1 = \frac{16}{3} - \frac{36}{3} + 8\]
\[ \Rightarrow y_1 = \frac{4}{3} \text { or } y_1 = \frac{4}{3}\]
\[\text { Thus, the required points are }\left( \frac{5}{3}, \frac{4}{3} \right)\text { and }\left( \frac{4}{3}, \frac{4}{3} \right).\]
APPEARS IN
RELATED QUESTIONS
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The curve y = `x^(1/5)` has at (0, 0) ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
At (0, 0) the curve y = x3 + x
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
Which of the following represent the slope of normal?
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.