English

Find the Equation of the Normals to the Curve Y = X3 + 2x + 6 Which Are Parallel to the Line X + 14y + 4 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.

Solution

The equation of the given curve is y = x3 + 2x + 6.

The slope of the tangent to the given curve at any point (xy) is given by,

When x = 2, y = 8 + 4 + 6 = 18.

When x = −2, y = − 8 − 4 + 6 = −6.

Therefore, there are two normals to the given curve with slope -1/4 and passing through the points (2, 18) and (−2, −6).

Thus, the equation of the normal through (2, 18) is given by,

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.3 [Page 213]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.3 | Q 21 | Page 213

RELATED QUESTIONS

Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


At (0, 0) the curve y = x3 + x


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×