English

Find the Angle of Intersection of the Curves Y 2 = 4 a X and X 2 = 4 B Y . - Mathematics

Advertisements
Advertisements

Question

Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Solution

The given curves are
y2 = 4ax         .....(1)
x= 4by         .....(2)
Solving (1) and (2), we get

\[\left( \frac{x^2}{4b} \right)^2 = 4ax\]

\[ \Rightarrow x^4 - 64a b^2 x = 0\]

\[ \Rightarrow x\left( x^3 - 64a b^2 \right) = 0\]

\[ \Rightarrow x = 0, 4 a^\frac{1}{3} b^\frac{2}{3}\]

When x = 0, y = 0
When \[x = 4 a^\frac{1}{3} b^\frac{2}{3} , y = \frac{\left( 4 a^\frac{1}{3} b^\frac{2}{3} \right)^2}{4b} = 4 a^\frac{2}{3} b^\frac{1}{3}\]

Thus, the given curves intersect at (0, 0) and

\[\left( 4 a^\frac{1}{3} b^\frac{2}{3} , 4 a^\frac{2}{3} b^\frac{1}{3} \right)\]
At (0, 0), the angle between the curves is 90°.
Differentiating (1) with respect to x, we get

\[2y\frac{dy}{dx} = 4a\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2a}{y}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 4 a^\frac{1}{3} b^\frac{2}{3} , 4 a^\frac{2}{3} b^\frac{1}{3} \right) = \frac{2a}{4 a^\frac{2}{3} b^\frac{1}{3}} = \frac{1}{2} \left( \frac{a}{b} \right)^\frac{1}{3}\]

Differentiating (2) with respect to x, we get

\[2x = 4b\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x}{2b}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 4 a^\frac{1}{3} b^\frac{2}{3} , 4 a^\frac{2}{3} b^\frac{1}{3} \right) = \frac{4 a^\frac{1}{3} b^\frac{2}{3}}{2b} = 2 \left( \frac{a}{b} \right)^\frac{1}{3}\]

Let θ be the angle between the two curves. Then,
 

\[\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]

\[ \Rightarrow \tan\theta = \left| \frac{\frac{1}{2} \left( \frac{a}{b} \right)^\frac{1}{3} - 2 \left( \frac{a}{b} \right)^\frac{1}{3}}{1 + \frac{1}{2} \left( \frac{a}{b} \right)^\frac{1}{3} \times 2 \left( \frac{a}{b} \right)^\frac{1}{3}} \right|\]

\[ \Rightarrow \tan\theta = \left| \frac{- \frac{3}{2} \left( \frac{a}{b} \right)^\frac{1}{3}}{1 + \left( \frac{a}{b} \right)^\frac{2}{3}} \right| = \left| \frac{3 a^\frac{1}{3} b^\frac{1}{3}}{2\left( a^\frac{2}{3} + b^\frac{2}{3} \right)} \right|\]

\[ \Rightarrow \theta = \tan^{- 1} \left| \frac{3 \left( ab \right)^\frac{1}{3}}{2\left( a^\frac{2}{3} + b^\frac{2}{3} \right)} \right|\]

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

RELATED QUESTIONS

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×