Advertisements
Advertisements
Question
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Solution
\[Let I = \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \sin\alpha \sin\left( \pi - x \right)}dx \left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - I\]
\[ \Rightarrow 2I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi \frac{1}{1 + sin\alpha sin x}dx\]
\[\text { Substituting }\sin x = \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}, \text { we get }\]
\[2I = \pi \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + sin\alpha \times 2\tan\frac{x}{2}}dx\]
\[I = \frac{\pi}{2} \int\limits_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \sin\alpha \times 2\tan\frac{x}{2}}dx\]
\[\text { Let } \tan\frac{x}{2} = t, d\left( \tan\frac{x}{2} \right) = dt \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[\text { Also }, \]
\[\text { When } x \to 0, t \to \tan0 = 0\]
\[\text { When } x \to \pi, t \to \tan\frac{\pi}{2} = \infty \]
\[ \therefore I = \frac{\pi}{2} \int\limits_0^\infty \frac{2dt}{t^2 + 2t\sin\alpha + 1}\]
\[ \Rightarrow I = \pi \int\limits_0^\infty \frac{1}{\left( t + \sin\alpha \right)^2 + \cos^2 \alpha}dt\]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha} \left[ \tan^{- 1} \left( \frac{t + \sin\alpha}{\cos\alpha} \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left[ \tan^{- 1} \infty - \tan^{- 1} \left( \tan\alpha \right) \right]\]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left( \frac{\pi}{2} - \alpha \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Solve each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int x^3/(x + 1)` is equal to ______.