English

2 ∫ 1 ( X − 1 X 2 ) E X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

Solution

\[Let\ I = \int_1^2 \left( \frac{x - 1}{x^2} \right) e^x\ d\ x . Then, \]
\[I = \int_1^2 \left( \frac{e^x}{x} - \frac{e^x}{x^2} \right) dx\]
\[ \Rightarrow I = \int_1^2 \frac{e^x}{x} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left\{ \left[ \frac{e^x}{x} \right]_1^2 - \int_1^2 \frac{- 1}{x^2} e^x dx \right\} - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 + \int_1^2 \frac{e^x}{x^2} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 \]
\[ \Rightarrow I = \frac{e^2}{2} - e\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 47 | Page 17

RELATED QUESTIONS

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


`int_0^(2a)f(x)dx`


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×