Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_1^2 \left( \frac{x - 1}{x^2} \right) e^x\ d\ x . Then, \]
\[I = \int_1^2 \left( \frac{e^x}{x} - \frac{e^x}{x^2} \right) dx\]
\[ \Rightarrow I = \int_1^2 \frac{e^x}{x} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left\{ \left[ \frac{e^x}{x} \right]_1^2 - \int_1^2 \frac{- 1}{x^2} e^x dx \right\} - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 + \int_1^2 \frac{e^x}{x^2} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 \]
\[ \Rightarrow I = \frac{e^2}{2} - e\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
Evaluate :
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`