Advertisements
Advertisements
Question
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Solution
\[Let\ I = \int_0^{( \pi )^\frac{2}{3}} \sqrt{x} \cos^2 x^\frac{3}{2} d x . Then, \]
\[Let\ x^\frac{3}{2} = t . Then, \frac{3}{2}\sqrt{x} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \left( \pi \right)^\frac{2}{3} , t = \pi\]
\[ \therefore I = \frac{2}{3} \int_0^\pi \cos^2 t dt\]
\[ \Rightarrow I = \frac{2}{3} \int_0^\pi \frac{1 + \cos 2x}{2} dx\]
\[ \Rightarrow I = \frac{1}{3} \left[ x + \frac{\sin 2x}{2} \right]_0^\pi \]
\[ \Rightarrow I = \frac{1}{3}\left( \pi + 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`