Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} d\ x . Then, \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = , t = 0\ and\ x = 1, t = 1\]
\[ \therefore I = \int_0^1 \frac{12t}{\left( 1 + t \right)^4} dt\]
\[\text{Integrating by parts}\]
\[I = 12 \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 + 12 \int_0^1 \frac{1}{3 \left( 1 + t \right)^3}dt\]
\[ \Rightarrow I = 12\left\{ \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 - \left[ \frac{1}{6 \left( 1 + t \right)^2} \right]_0^1 \right\}\]
\[ \Rightarrow I = 12\left\{ - \frac{1}{24} - 0 - \frac{1}{24} + \frac{1}{6} \right\}\]
\[ \Rightarrow I = 12 \times \frac{1}{12}\]
\[ \Rightarrow I = 1\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x