Advertisements
Advertisements
Question
Solution
\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]
\[ = \int_0^\pi \cos^{- 1} \left( \cos x \right)dx +\int_\pi^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]
\[ = \int_0^\pi xdx + \int_\pi^{2\pi} \left( 2\pi - x \right)dx .....................\left[ \pi \leq x \leq 2\pi \Rightarrow - 2\pi \leq - x \leq - \pi \Rightarrow 0 \leq 2\pi - x \leq \pi \right]\]
\[= \left.\frac{x^2}{2}\right|_0^\pi + \left.\frac{\left( 2\pi - x \right)^2}{2 \times \left( - 1 \right)}\right|_\pi^{2\pi} \]
\[ = \frac{1}{2}\left( \pi^2 - 0 \right) - \frac{1}{2}\left( 0 - \pi^2 \right)\]
\[ = \frac{\pi^2}{2} + \frac{\pi^2}{2}\]
\[ = \pi^2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`Γ(3/2)`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: