English

∫ 2 π 0 Cos − 1 ( Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]
Sum

Solution

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[ = \int_0^\pi \cos^{- 1} \left( \cos x \right)dx +\int_\pi^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[ = \int_0^\pi xdx + \int_\pi^{2\pi} \left( 2\pi - x \right)dx .....................\left[ \pi \leq x \leq 2\pi \Rightarrow - 2\pi \leq - x \leq - \pi \Rightarrow 0 \leq 2\pi - x \leq \pi \right]\]

\[= \left.\frac{x^2}{2}\right|_0^\pi + \left.\frac{\left( 2\pi - x \right)^2}{2 \times \left( - 1 \right)}\right|_\pi^{2\pi} \]
\[ = \frac{1}{2}\left( \pi^2 - 0 \right) - \frac{1}{2}\left( 0 - \pi^2 \right)\]
\[ = \frac{\pi^2}{2} + \frac{\pi^2}{2}\]
\[ = \pi^2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 28 | Page 56

RELATED QUESTIONS

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

`Γ(3/2)`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×