Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]
\[ = \int_0^\pi \cos^{- 1} \left( \cos x \right)dx +\int_\pi^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]
\[ = \int_0^\pi xdx + \int_\pi^{2\pi} \left( 2\pi - x \right)dx .....................\left[ \pi \leq x \leq 2\pi \Rightarrow - 2\pi \leq - x \leq - \pi \Rightarrow 0 \leq 2\pi - x \leq \pi \right]\]
\[= \left.\frac{x^2}{2}\right|_0^\pi + \left.\frac{\left( 2\pi - x \right)^2}{2 \times \left( - 1 \right)}\right|_\pi^{2\pi} \]
\[ = \frac{1}{2}\left( \pi^2 - 0 \right) - \frac{1}{2}\left( 0 - \pi^2 \right)\]
\[ = \frac{\pi^2}{2} + \frac{\pi^2}{2}\]
\[ = \pi^2\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Write the coefficient a, b, c of which the value of the integral
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^3/(x + 1)` is equal to ______.