Advertisements
Advertisements
प्रश्न
Find `int sqrt(10 - 4x + 4x^2) "d"x`
उत्तर
We have I = `int sqrt(10 - 4x + 4x^2) "d"x`
= `int sqrt((2x - 1)^2 + (3)^2) "d"x`
Put t = 2x – 1
Then dt = 2dx.
Therefore, I = `1/2 int sqrt("t"^2 + (3)^2) "dt"`
= `1/2 "t" sqrt("t"^2 + 9)/2 + 9/4 log|"t" + sqrt("t"^2 + 9)| + "C"`
= `1/4(2x - 1) sqrt((2x - 1)^2 + 9) + 9/4 log|(2x - 1) + sqrt((2x - 1)^2 + 9)| + "C"`
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is