Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 x\ e^{x^2} d\ x . \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1\, t = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 e^t\ dt\]
\[ \Rightarrow I = \frac{1}{2} \left( e^t \right)_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( e - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate :
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`