Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ e^x = t . Then, e^x dx = dt\]
\[When\ x = 0, t = 1\ and\ x = 1, t = e\]
\[ \therefore I = \int_0^1 \frac{e^x}{1 + e^{2x}} d x\]
\[ \Rightarrow I = \int_1^e \frac{dt}{1 + t^2}\]
\[ \Rightarrow I = \left[ \tan^{- 1} x \right]_1^e \]
\[ \Rightarrow I = \tan^{- 1} e - \tan^{- 1} 1\]
\[ \Rightarrow I = \tan^{- 1} e - \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Evaluate each of the following integral:
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^3/(x + 1)` is equal to ______.