Advertisements
Advertisements
Question
Solution
\[Let\ e^x = t . Then, e^x dx = dt\]
\[When\ x = 0, t = 1\ and\ x = 1, t = e\]
\[ \therefore I = \int_0^1 \frac{e^x}{1 + e^{2x}} d x\]
\[ \Rightarrow I = \int_1^e \frac{dt}{1 + t^2}\]
\[ \Rightarrow I = \left[ \tan^{- 1} x \right]_1^e \]
\[ \Rightarrow I = \tan^{- 1} e - \tan^{- 1} 1\]
\[ \Rightarrow I = \tan^{- 1} e - \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Find: `int logx/(1 + log x)^2 dx`