Advertisements
Advertisements
Question
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Solution
Put x – α = t2.
Then β – x = β – (t2 +α)
= β – t2 – α
= – t2 – α + β
And dx = 2tdt.
Now I = `int (2"t dt")/sqrt("t"^2(beta - alpha - "t"^2))`
= `int (2"dt")/sqrt((beta - alpha - "t"^2))`
= `2 "dt"/sqrt("k"^2 - "t"^2)`, where k2 = β – α
= `2sin^-1 "t"/"k" + "C"`
= `2sin^-1 sqrt((x - alpha)/(beta - alpha)) + "C"`
APPEARS IN
RELATED QUESTIONS
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Find: `int logx/(1 + log x)^2 dx`