Advertisements
Advertisements
Question
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Sum
Solution
`int_0^oo x^2 "e"^(-2x) "d"x = int_0^oo x^"n""e"^(-"a"x) "d"x`
= `("n"!)/("a"^("n" + 1))`
Where n = 2
a = 2
So `int_0^oo "f"(x) "d"x = (2!)/2^3`
= `2/8`
= `1/4`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]
\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]
\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]
\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`