Advertisements
Advertisements
Question
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Sum
Solution
`int_0^oo "e"^(- x/2) x^5 "d"x = (5!)/(1/2)^(5+ 1)`
= `(5!)/(1/2)^6`
= (26)5!
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]
\[\int\limits_0^1 \frac{x}{x + 1} dx\]
\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]