Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
बेरीज
उत्तर
`int_0^oo "e"^(- x/2) x^5 "d"x = (5!)/(1/2)^(5+ 1)`
= `(5!)/(1/2)^6`
= (26)5!
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \frac{x}{x + 1} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]
\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]
\[\int\limits_0^\pi x \sin^3 x\ dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]