Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
उत्तर
\[We have, \]
\[I = \int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin \left( \pi - x \right)} dx ...............\left( \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int\limits_0^\pi \frac{\pi}{1 + \cos \alpha \sin x} dx \]
\[ \Rightarrow I = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \sin x} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \cos \alpha 2\tan \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0 ; t \to 0\]
\[\text{and }x \to \pi ; t \to \infty \]
Now, integral becomes
\[I = \pi \int\limits_0^\infty \frac{dt}{1 + t^2 + 2t \cos \alpha} \]
\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + 1 - \cos^2 \alpha}\]
\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + \sin^2 \alpha}\]
\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]
\[ = \frac{\pi}{\sin \alpha} \left[ \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \cot \alpha \right) \right]\]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left\{ \tan\left( \frac{\pi}{2} - \alpha \right) \right\} \right]\]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \left( \frac{\pi}{2} - \alpha \right) \right]\]
\[ = \frac{\pi\alpha}{\sin \alpha}\]
\[\]
\[\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.