मराठी

Π ∫ 0 X 1 + Cos α Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]

बेरीज

उत्तर

\[We have, \]
\[I = \int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin \left( \pi - x \right)} dx ...............\left( \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 2 \right)\]
Adding (1) and (2), we get

\[2I = \int\limits_0^\pi \frac{\pi}{1 + \cos \alpha \sin x} dx \]
\[ \Rightarrow I = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \sin x} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \cos \alpha 2\tan \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0 ; t \to 0\]
\[\text{and }x \to \pi ; t \to \infty \]
Now, integral becomes

\[I = \pi \int\limits_0^\infty \frac{dt}{1 + t^2 + 2t \cos \alpha} \]

\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + 1 - \cos^2 \alpha}\]

\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + \sin^2 \alpha}\]

\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]

\[ = \frac{\pi}{\sin \alpha} \left[ \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]

\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \cot \alpha \right) \right]\]

\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left\{ \tan\left( \frac{\pi}{2} - \alpha \right) \right\} \right]\]

\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \left( \frac{\pi}{2} - \alpha \right) \right]\]

\[ = \frac{\pi\alpha}{\sin \alpha}\]

\[\]

\[\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 46 | पृष्ठ १२२

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×