Advertisements
Advertisements
प्रश्न
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
उत्तर
\[\text{Here, }a = 0, b = 3, f\left( x \right) = x^2 + 1, h = \frac{3 - 0}{n} = \frac{3}{n}\]
Therefore,
\[ \int_0^3 \left( x^2 + 1 \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 0 + 1 + h^2 + 1 + \left( 2h \right)^2 + 1 + . . . . . . . . . + \left( \left( n - 1 \right)h \right)^2 + 1 \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left( 1^2 + 2^2 + . . . . . . . . . . . . . . \left( n - 1 \right)^2 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 3 + \frac{9}{2}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) \right]\]
\[ = 3 + 9 = 12\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
Γ(4)
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`