Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
उत्तर
`int_(-1)^1 "f"(x) "d"x = int_(-1)^0 "f"(x) "d"x + int_0^1 "f"(x) "d"x`
= `int_(-1)^0 (-x) "d"x + int_0^1 x "d"x`
= `- [x^2/2]_(-1)^0 + [x^2/2]_0^1`
= `- [0 - (-1)^2/2] + [(1)^2/2 - ((0))/2]`
= `- [-1/2] + [1/2]`
= `1/2 + 1/2`
= 1
APPEARS IN
संबंधित प्रश्न
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`Γ(3/2)`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Find: `int logx/(1 + log x)^2 dx`