Advertisements
Advertisements
प्रश्न
Find: `int logx/(1 + log x)^2 dx`
उत्तर
`int logx/(1 + log x)^2 dx = int (log x + 1 - 1)/(1 + log x)^2 dx`
= `int 1/(1 + log x) dx - int 1/(1 + log x)^2 dx`
= `1/(1 + log x) xx x - int (-1)/(1 + log x)^2 xx 1/x xx xdx - int 1/(1 + log x)^2 dx`
= ` x/(1 + log x) + c`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.