Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \left( \cos^{- 1} x \right)^2 d x . Then, \]
\[I = \int_0^1 1 \left( \cos^{- 1} x \right)^2 d x\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 - \int_0^1 2x \cos^{- 1} x \frac{- 1}{\sqrt{1 - x^2}} dx\]
\[\text{Again, integrating second term by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + \left\{ 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \int_0^1 \frac{1}{\sqrt{1 - x^2}}\sqrt{1 - x^2} dx \right\}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \left[ x \right]_0^1 \]
\[ \Rightarrow I = 0 + \frac{2\pi}{2} - 2\]
\[ \Rightarrow I = \pi - 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`