Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let }\ I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) d x . Then, \]
\[I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1 - 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right) dx .................\left[ As, \sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}, \cos A = 1 - 2 \sin^2 \frac{A}{2} \right]\]
\[ \Rightarrow I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx - \int_\frac{\pi}{2}^\pi e^x \cot \frac{x}{2} dx\]
\[\text{Integrating second term by parts}\]
\[I = \left\{ - \left[ e^x \cot \frac{x}{2} \right]_\frac{\pi}{2}^\pi - \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx \right\} + \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx\]
\[ \Rightarrow I = - \left[ 0 - e^\frac{\pi}{2} \right]\]
\[ \Rightarrow I = e^\frac{\pi}{2} \]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`