Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d\ x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} \times \frac{\sqrt{1 - x}}{\sqrt{1 - x}} d x\]
\[ \Rightarrow I = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \int_0^1 \frac{- 2x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \left[ 2\sqrt{1 - x^2} \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{2} - 0 + 0 - 1\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.