Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi x \cos^2 x\ d\ x . . . (i) \]
\[ = \int_0^\pi \left( \pi - x \right) \cos^2 \left( \pi - x \right)\ d\ x\]
\[ = \int_0^\pi \left( \pi - x \right) \cos^2 x\ dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \cos^2 x\ dx\]
\[ = \int_0^\pi \pi \cos^2 x\ dx\]
\[ = \pi \int_0^\pi \frac{1 + \cos2x}{2} dx\]
\[ = \frac{\pi}{2} \int_0^\pi \left( 1 + \cos2x \right) dx\]
\[ = \frac{\pi}{2} \left[ x + \frac{\sin2x}{2} \right]_0^\pi \]
\[ = \frac{\pi}{2}\left( \pi - 0 \right)\]
\[ Hence\ I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.