Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
बेरीज
उत्तर
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x = int_(-1)^1 ("d"(x^2 + 3x + 7))/(x^2 + 3x + 7)`
= `[log|x^2 + 3x + 7|]_(-1)^1`
= `log|1 + 3 + 7| - log|1 - 3 + 7|`
= `log 11 - log 5`
= `log [11/5]`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]
\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]
\[\int\limits_0^\pi \cos^5 x\ dx .\]
Evaluate :
\[\int\limits_2^3 3^x dx .\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Γ(1) is