Advertisements
Advertisements
Question
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Sum
Solution
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x = int_(-1)^1 ("d"(x^2 + 3x + 7))/(x^2 + 3x + 7)`
= `[log|x^2 + 3x + 7|]_(-1)^1`
= `log|1 + 3 + 7| - log|1 - 3 + 7|`
= `log 11 - log 5`
= `log [11/5]`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]
\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]
\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
\[\int\limits_0^2 x\left[ x \right] dx .\]
\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]