Advertisements
Advertisements
प्रश्न
पर्याय
1
e − 1
e + 1
0
उत्तर
1
\[\int_1^e \log x d x\]
\[ = \int_1^e \log x x^0 d x\]
\[ = \left[ x \log x \right]_1^e - \int_1^e \frac{1}{x}x d x\]
\[ = \left[ x \log x \right]_1^e - \left[ x \right]_1^e \]
\[ = \left( e - 0 \right) - \left( e - 1 \right)\]
\[ = e - e + 1\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`