Advertisements
Advertisements
प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
उत्तर
We have,
\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
LaTeX
\[ \Rightarrow I = \int_1^3 f\left( x \right) d x + \int_3^4 f\left( x \right) d x ...................\left[ \text{Additive property} \right]\]
\[ \Rightarrow I = \int_1^3 \left( 7x + 3 \right) d x + \int_3^4 8x d x\]
\[ \Rightarrow I = \left[ \frac{7 x^2}{2} + 3x \right]_1^3 + \left[ 4 x^2 \right]_3^4 \]
\[ \Rightarrow I = \frac{63}{2} + 9 - \frac{7}{2} - 3 + 64 - 36\]
\[ \Rightarrow I = \frac{56}{2} + 34\]
\[ \Rightarrow I = 62\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`Γ (9/2)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is