Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^3 x d x\]
\[ = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x\left( 1 - \cos^2 x \right)dx\]
\[ = \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x dx - \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin x \cos^2 x dx\]
\[ = \left[ - \cos x \right]_\frac{- \pi}{2}^\frac{\pi}{2} + \left[ \frac{\cos^3 x}{3} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = 0 + 0 = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is