Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{4} \sin2x \sin3x d x ..................(1)\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} 2\cos2x\frac{\cos3x}{3}dx\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9} \int_0^\frac{\pi}{4} \sin2x \sin3x d x\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9}I ..............\left[From (1) \right]\]
\[ \Rightarrow \frac{5}{9}I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}} + 0\]
\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}}\]
\[ \therefore I = \frac{3}{5\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Solve each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.