मराठी

Π / 4 ∫ 0 Sin 2 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]

बेरीज

उत्तर

\[Let, I = \int_0^\frac{\pi}{4} \sin2x \sin3x d x ..................(1)\]

\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} 2\cos2x\frac{\cos3x}{3}dx\]

\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9} \int_0^\frac{\pi}{4} \sin2x \sin3x d x\]

\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9}I ..............\left[From (1) \right]\]

\[ \Rightarrow \frac{5}{9}I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} \]

\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}} + 0\]

\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}}\]

\[ \therefore I = \frac{3}{5\sqrt{2}}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 16 | पृष्ठ १२१

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×