मराठी

∞ ∫ 0 X ( 1 + X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

बेरीज

उत्तर

\[I=\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

Using partial fraction,

\[\frac{x}{(1 + x)(1 + x^2 )}\frac{A}{1 + x} + \frac{Bx + C}{1 + x^2}\]

\[x = A(1 + x^2 ) + (Bx + C)(1 + x)\]

\[x = A + A x^2 + Bx + B x^2 + C + Cx\]

\[B + C = 1\]

\[A + C = 0\]

\[A + B = 0\]

\[so, A = \frac{- 1}{2}, B = \frac{1}{2}, C = \frac{1}{2}\]

Putting the values of A, B and C we get

\[\frac{\frac{- 1}{2}}{1 + x} + \frac{\frac{1}{2}x + \frac{1}{2}}{1 + x^2}\]

\[ = \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]

\[\text{Therefore, }I = \int_0^\infty \frac{- 1}{2}\left[ \frac{1}{1 + x} \right] + \frac{1}{2}\left[ \frac{x + 1}{1 + x^2} \right]\]

\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \int_0^\infty \left[ \frac{x}{1 + x^2} + \frac{1}{1 + x^2} \right]\]

\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2 \times 2} \int_0^\infty \left[ \frac{2x}{1 + x^2} \right] + \frac{1}{2} \int_0^\infty \frac{1}{1 + x^2}\]

\[I = \frac{- 1}{2} \left[ \log\left| 1 + x \right| \right]_0^\infty + \frac{1}{4} \left[ \log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{- 1}{2} \left[ log\left| 1 + x \right| \right]_0^\infty + \frac{1}{2} \times \frac{1}{2} \left[ log\left| 1 + x^2 \right| \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2} \left[ \log\frac{\sqrt{x^2 + 1}}{x + 1} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2} \left[ log\frac{\sqrt{1 + \frac{1}{x^2}}}{1 + \frac{1}{x}} \right]_0^\infty + \left[ \frac{1}{2}ta n^{- 1} x \right]_0^\infty \]

\[I = \frac{1}{2}\left[ 0 \right] + \frac{1}{2}\left[ ta n^{- 1} \infty - ta n^{- 1} 0 \right]\]

`I=pi/4`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 15 | पृष्ठ १२१

संबंधित प्रश्‍न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int_0^1 | x\sin \pi x | dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×