Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
उत्तर
We have,
\[I = \int_0^\pi \sin^3 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 d x\]
\[ = \int_0^\pi \sin^2 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]
\[ = \int_0^\pi \left( 1 - \cos^2 x \right)\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[\text{When }x \to 0; t \to 1\]
\[\text{and }x \to \pi; t \to - 1\]
\[ \therefore I = - \int_1^{- 1} \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]
\[ = \int_{- 1}^1 \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]
\[ = \int_{- 1}^1 \left( 1 + 2t - t^2 - 2 t^3 \right)\left( 1 + 2t + t^2 \right)dt\]
\[ = \int_{- 1}^1 \left( 1 + 2t + t^2 + 2t + 4 t^2 + 2 t^3 - t^2 - 2 t^3 - t^4 - 2 t^3 - 4 t^4 - 2 t^5 \right)dt\]
\[ = \int_{- 1}^1 \left( 1 + 4t + 4 t^2 - 2 t^3 - 5 t^4 - 2 t^5 \right)dt\]
\[ = \left[ t + 2 t^2 + \frac{4 t^3}{3} - \frac{t^4}{2} - t^5 - \frac{t^6}{3} \right]_{- 1}^1 \]
\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} - \left( - 1 \right) - 2 \left( - 1 \right)^2 - \frac{4 \left( - 1 \right)^3}{3} + \frac{\left( - 1 \right)^4}{2} + \left( - 1 \right)^5 + \frac{\left( - 1 \right)^6}{3}\]
\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} + 1 - 2 + \frac{4}{3} + \frac{1}{2} - 1 + \frac{1}{3}\]
\[ = \frac{8}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Find : `∫_a^b logx/x` dx
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.