मराठी

Π / 2 ∫ 0 X 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

उत्तर

\[Let I = \int_0^\frac{\pi}{2} x^2 \cos^2 x d x . Then, \]
\[I = \int_0^\frac{\pi}{2} x^2 \left( \frac{1 + \cos 2x}{2} \right)dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( \frac{x^2}{2} + \frac{x^2 \cos 2x}{2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{x}{2} \sin 2x\ d\ x\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{- x \cos 2x}{4} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos2x}{2}dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} + \left[ \frac{x \cos 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^3}{48} - \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 31 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×