Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{tanx}} d x ................(1) \]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\cot\left( \frac{\pi}{2} - x \right)}}{\sqrt{\cot\left( \left( \frac{\pi}{2} - x \right) \right)} + \sqrt{\tan\left( \frac{\pi}{2} - x \right)}} dx ................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{tanx}}{\sqrt{tanx} + \sqrt{cotx}} dx ..............(2)\]
\[ \text{Adding (1) and (2})\]
\[2I = \int_0^\frac{\pi}{2} \left( \frac{\sqrt{cotx}}{\sqrt{cotx} + \sqrt{tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \right) d x \]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`Γ (9/2)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`