Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1 + \cos2x}{2} dx\]
\[ = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 + \cos2x \right) dx\]
\[ = \frac{1}{2} \left[ x + \frac{\sin2x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left( \frac{\pi}{2} + 0 + \frac{\pi}{2} - 0 \right)\]
\[ = \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`Γ (9/2)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.