Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_\frac{\pi}{6}^\frac{\pi}{4} cosec x d x . Then, \]
\[I = \int_\frac{\pi}{6}^\frac{\pi}{4} cosec\ x \frac{cosec\ x - \cot x}{cosec x - \cot x} d x\]
\[ \Rightarrow I = \int_\frac{\pi}{6}^\frac{\pi}{4} \frac{{cosec}^2\ x - cosec\ x \cot x}{cosec\ x\ - \cot x} d x\]
\[ \Rightarrow I = \left[ \log \left( cosec\ x - \cot x \right) \right]_\frac{\pi}{6}^\frac{\pi}{4} \]
\[ \Rightarrow I = \log \left( \sqrt{2} - 1 \right) - \log\left( 2 - \sqrt{3} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
Write the coefficient a, b, c of which the value of the integral
Evaluate :
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.