Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
उत्तर
\[\int_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) d x\]
\[Let, x = \tan\theta, dx = se c^2 \theta d\theta\]
\[\text{When, }x \to 0 ; \theta \to 0\]
\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]
Therefore, the integral becomes
\[ \int_0^\frac{\pi}{4} \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) se c^2 \theta d\theta\]
\[ = \int_0^\frac{\pi}{4} \cos^{- 1} \left( \cos2\theta \right) se c^2 \theta d\theta\]
\[ = 2 \int_0^\frac{\pi}{4} \theta se c^2 \theta d\theta\]
\[ = 2 \left[ \theta tan\theta \right]_0^\frac{\pi}{4} - 2 \int_0^\frac{\pi}{4} \tan\theta d\theta\]
\[ = 2 \left[ \theta \tan\ theta \right]_0^\frac{\pi}{4} + 2 \left[ \log\left( \cos\theta \right) \right]_0^\frac{\pi}{4} \]
\[ = 2\left( \frac{\pi}{4} - 0 \right) + 2\left[ \log\frac{1}{\sqrt{2}} - 0 \right]\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
संबंधित प्रश्न
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`