Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
पर्याय
0
2
π
1
उत्तर
π
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( x^3 + x\cos x + \tan^5 x + 1 \right) d x\]
\[ = \left[ \frac{x^4}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \left[ x \sin x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x dx + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x \left( se c^2 x - 1 \right)dx + \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{\pi^4}{64} - \frac{\pi^4}{64} + \frac{\pi}{2} - \frac{\pi}{2} - \left[ - \cos x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x se c^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x dx + \frac{\pi}{2} + \frac{\pi}{2}\]
\[ = \pi + 0 + \left[ \frac{\tan^4 x}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tanx \sec^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tan x dx\]
\[ = \pi - \left[ \frac{\tan^2 x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \left[ - \log\left( \cos x \right) \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \pi\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`