मराठी

The Value of π / 2 ∫ − π / 2 ( X 3 + X Cos X + Tan 5 X + 1 ) D X , Is,0,2,π,1 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 

पर्याय

  •  0

  • 2

  • π

  • 1

MCQ

उत्तर

π

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( x^3 + x\cos x + \tan^5 x + 1 \right) d x\]

\[ = \left[ \frac{x^4}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \left[ x \sin x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x dx + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x \left( se c^2 x - 1 \right)dx + \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]

\[ = \frac{\pi^4}{64} - \frac{\pi^4}{64} + \frac{\pi}{2} - \frac{\pi}{2} - \left[ - \cos x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x se c^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x dx + \frac{\pi}{2} + \frac{\pi}{2}\]

\[ = \pi + 0 + \left[ \frac{\tan^4 x}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tanx \sec^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tan x dx\]

\[ = \pi - \left[ \frac{\tan^2 x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \left[ - \log\left( \cos x \right) \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]

\[ = \pi\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 42 | पृष्ठ १२०

संबंधित प्रश्‍न

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

Γ(n) is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×