Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right], \]
\[\text{where, }h = \frac{b - a}{n}\]
\[Here, a = 0, b = 3, f\left( x \right) = x + 4, h = \frac{3 - 0}{n} = \frac{3}{n}\]
\[\text{Therefore, }I = \int_0^3 \left( x + 4 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 4 \right) + \left( h + 4 \right) + . . . . . . . + \left( \left( n - 1 \right)h + 4 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\left( 1 + 2 + . . . . . . . + \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ 4n + \frac{3}{n} \times \frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \left[ 12 + \frac{9}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 12 + \frac{9}{2} = \frac{33}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate :
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.