हिंदी

3 ∫ 0 ( X + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^3 \left( x + 4 \right) dx\]
योग

उत्तर

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right], \]
\[\text{where, }h = \frac{b - a}{n}\]

\[Here, a = 0, b = 3, f\left( x \right) = x + 4, h = \frac{3 - 0}{n} = \frac{3}{n}\]
\[\text{Therefore, }I = \int_0^3 \left( x + 4 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 4 \right) + \left( h + 4 \right) + . . . . . . . + \left( \left( n - 1 \right)h + 4 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\left( 1 + 2 + . . . . . . . + \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ 4n + \frac{3}{n} \times \frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \left[ 12 + \frac{9}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 12 + \frac{9}{2} = \frac{33}{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 1 | पृष्ठ ११०

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^1 \tan^{- 1} x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×