Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right], \]
\[\text{where, }h = \frac{b - a}{n}\]
\[Here, a = 0, b = 3, f\left( x \right) = x + 4, h = \frac{3 - 0}{n} = \frac{3}{n}\]
\[\text{Therefore, }I = \int_0^3 \left( x + 4 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 4 \right) + \left( h + 4 \right) + . . . . . . . + \left( \left( n - 1 \right)h + 4 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\left( 1 + 2 + . . . . . . . + \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ 4n + \frac{3}{n} \times \frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \left[ 12 + \frac{9}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 12 + \frac{9}{2} = \frac{33}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`